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of mass energies available at the LHC open new windows on the QGP: we demonstrate

that jet shape and jet cross section measurements become feasible as a new, differen-

tial and accurate test of the underlying QCD theory. We present a first step in under-

standing these shapes and cross sections in heavy ion reactions. Our approach allows

for detailed simulations of the experimental acceptance/cuts that help isolate jets in such

high-multiplicity environment. It is demonstrated for the first time that the pattern of

stimulated gluon emission can be correlated with a variable quenching of the jet rates and

provide an approximately model-independent approach to determining the characteristics

of the medium-induced bremsstrahlung spectrum. Surprisingly, in realistic simulations of

parton propagation through the QGP we find a minimal increase in the mean jet radius

even for large jet attenuation. Jet broadening is manifest in the tails of the energy distri-

bution away from the jet axis and its quantification requires high statistics measurements

that will be possible at the LHC.
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1. Introduction

Fast partons propagating in a hot/dense nuclear medium are expected to lose a large frac-

tion of their energy [1]. In fact, the stopping power of strongly-interacting matter for

color-charged particles has, by far, the largest experimentally established effect: the at-

tenuation of the cross section for final-state observables of large mass/momentum/energy.

This jet quenching mechanism has been used to successfully explain the strong suppression

of the hadron spectra at large transverse momentum observed in nucleus-nucleus collisions
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at the Relativistic Heavy Ion Collider (RHIC) [2, 3]. There is mounting evidence that

the quark-gluon plasma (QGP)-induced quenching can be disentangled from other nuclear

effects even at the much lower Super Proton Synchrotron (SPS) center of mass energy [4].

To calculate parton energy loss in the QGP several theoretical approaches have been de-

veloped [5 – 8]. While they tackle the same basic problem, they use different assumptions

for the boundary conditions (initial/final quark or gluon virtuality), make different approx-

imations for the parent parton and radiative gluon kinematics, and treat differently the

interaction between the jet+gluon system with the medium (differentially vs on average).

For discussion see [9].

At present, most measurements of hard processes are limited to single particles and par-

ticle correlations, which are only the leading fragments of a jet. There is general agreement

on the physics that controls inclusive particle suppression in the QGP and the experimen-

tal methodology of determining RAA(pT ) (or IAA(pT1
, pT2

)) [2]. Thus, for any particular

combination of radiative/collisional energy loss evaluation and its phenomenological appli-

cation to leading particle quenching the QGP density can be determined with 20 − 25%

“statistical” accuracy [10]. An inherent limitation of this approach is that while fits to

the data can, not surprisingly, always be performed [11] they do not resolve the staggering

order of magnitude ”systematic” discrepancy in the extracted medium properties. Fur-

thermore, focusing on quantities that can be constrained with little ambiguity from the

measured rapidity entropy density in heavy ion collisions distracts from issues such as the

approximations that go into theoretical energy loss derivations and their application to

systems where more often than not these initial assumptions are violated.1 In searching

for experimental measurements which can pinpoint the framework for energy loss calcu-

lations that is applicable to heavy ion reactions, complex multi-particle correlations may

not be optimal. They are very sensitive to non-perturbative effects/fragmentation and the

modeling effort cannot be systematically improved due to the violation of factorization for

highly exclusive observables [12]. It is, therefore, critical to find alternatives that accurately

reflect the energy flow in strongly-interacting systems and have a more direct connection

to the underlying quantum chromo-dynamics (QCD) theory.

The intra-jet energy distribution and the related cross section for jets in the case

of heavy ion reaction closely match the criteria outlined above. The high rate of hard

probes at the LHC and the large-acceptance calorimetry, see e.g. [13], will enable these

accurate measurements. It should be noted that proof-of-principle measurements of jet

cross sections have become possible at RHIC [14], but significantly better statistics will

be required to quantify the QGP effects on jets. In this paper we study the magnitude of

these modifications in Pb+Pb collisions at
√
s = 5.5 TeV at LHC. We demonstrate that a

natural generalization of leading particle suppression to jets,

Rjet
AA(ET ;Rmax, ωmin) =

dσAA(ET ;Rmax,ωmin)
dyd2ET

〈Nbin〉dσ
pp(ET ;Rmax,ωmin)

dyd2ET

, (1.1)

1Some examples include the assumption that the coupling constant gs ≪ 1, while gs ≈ 2, or the

assumption that L/λg → ∞ (≥ 10), while L/λg ≈ 5. Many jets undergo even fewer interactions in the

QGP since they originate in the periphery of the interaction region.
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is sensitive to the nature of the medium-induced energy loss. The steepness of the final-

state differential spectra amplifies the observable effect and the jet radius Rmax and

the minimum particle/tower energy pT min ≈ ωmin provide, through the evolution of

Rjet
AA(ET ;Rmax, ωmin) at any fixed centrality, experimental access to the QGP response

to quark and gluon propagation.

In the following discussion of jet shapes and jet cross sections in p+p and A+A colli-

sions we stay as close as possible to an analytic theoretical approach. Thus, we are able to

unambiguously connect the non-perturbative QCD effects, medium properties and the in-

duced bremsstrahlung spectrum to experimental jet observables. Determination of baseline

jet shapes and their generalization to finite momentum acceptance cuts builds upon the

work of Seymour [15]. We refer the reader to [15, 16] for discussion of the complications in

defining a jet and the related topic of jet-finding algorithms. To make the discussion sim-

pler, we will assume that the complications of the different definitions can be subsumed into

an Rsep parameter, as described in appendix B. Once a jet axis and all of the jet particles

/ calorimeter towers “i” have been identified, the “integral jet shape” is defined as:

Ψint(r;R) =

∑

i(ET )iΘ(r − (Rjet)i)
∑

i(ET )iΘ(R− (Rjet)i)
(1.2)

where r,R are Lorentz-invariant opening angles, Rij =
√

(ηi − ηj)2 + (φi − φj)2, and i

represents a sum over all the particles in this jet. Ψint(r;R) is the fraction of the total

energy of a jet of radius R within a sub-cone of radius r. It is automatically normalized so

that Ψint(R;R) = 1. To move from the integrated to the differential jet shape, we define:

ψ(r;R) =
dΨint(r;R)

dr
. (1.3)

This is the angular density of jet energy (remembering that the appropriate 3D repre-

sentation would be ψvis(r;R) = 1
2πrψ(r;R)). Understanding the many-body QCD theory

behind jet shape calculations will naturally lead to understanding the attenuation of jets

in reactions with heavy nuclei.

This article is organized as follows: in section 2, we outline a calculation of the jet

shape in nucleon-nucleon (N+N) collisions using the framework of perturbative QCD. We

compare this calculation to existing Tevatron data and investigate the jet shapes at LHC

energies. A brief discussion of final-state QGP-induced radiative energy loss in the GLV

formalism is given in section 3. We prove that the cancellation of small-angle near-jet axis

bremsstrahlung persists to all orders in the correlation between the multiple scattering

centers and provide details of its numerical evaluation. The fully differential distribution

of the energy lost by a hard parton is also shown. In section 4 we present results for the

medium-modified jet shapes and cross sections as a function of the jet cone radius, R, and

the experimental pT cut, ωmin, and discuss a simple energy sum rule. We demonstrate the

connection between the characteristic properties of the QGP-induced gluon radiation and

the variable suppression, at the same impact parameter b, of jet rates, the modulation of

the mean jet radius and the enhancement in the “tails” of the intra-jet energy flow dis-

tribution. A summary and conclusions are presented in section 5. Appendix A shows a
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calculation of the baseline jet cross sections at the LHC and an estimate of the accuracy

with which these cross sections and jet shapes can be measured with nominal first-year in-

tegrated luminosities in p+p and A+A reactions. In appendix B we study the influence of

the different perturbative and non-perturbative contributions to the jet shape in hadronic

collisions. Finally, appendix C contains a discussion of a double differential measure of en-

ergy flow in jets and its connection to particle angular correlation measurements, currently

conducted at RHIC.

2. Jet shapes in ’elementary’ p-p collisions

In the process of advancing perturbative QCD theory to many-nucleon systems, the final-

state experimental observables should be first understood in the simpler p+p reactions.

2.1 Theoretical considerations

2.1.1 Leading order results

In the introduction, we defined the central quantity of our study, the differential jet shape

for parton “a”, ψa(r;R). As in [15], the starting point of the calculation is the leading order

parton splitting: a suitable separation of physical time scales enables the separation of the

calculation into production and jet showering. The QCD splitting functions Pa→bc(z) give

the distribution of the large fractional lightcone momenta (or approximately the energy

fractions) of the fragments relative to the parent parton, z and 1 − z respectively. To

lowest order, recalling that ψa(r;R) describes the energy flow ∝ z, we can write:

ψa(r;R) =
dΨint,a(r;R)

dr
=
∑

b

αs
2π

2

r

∫ 1−Z

zmin

dz zPa→bc(z). (2.1)

In eq. (2.1) r = (1 − z)ρ is related to the opening angle ρ between the final-state partons.

In “elementary” p+p collisions the inclusion of soft particles (zmin ≈ 0) in theoretical

calculations is not a bad approximation. Even in this case, however, there are intrinsic

limitations on the minimum particle/calorimeter tower pT or ET , related, for example,

to detector acceptance. In heavy ion reactions, especially for the most interesting case of

central collisions, there is an enormous background of soft particles related to the bulk QGP.

Jet studies will likely require minimum particle energy > 1−2 GeV at RHIC and even more

stringent cuts at the LHC. Furthermore, control over zmin can provide detailed information

about the properties of QGP-induced bremsstrahlung. Further kinematic constraints on

the values of z arise since both the resulting partons must be within an angular distance

R of the original jet axis, r < R, rz/(1 − z) < R. In this case they are identified with

the jet. If not, they are identified as two separate jets. For a cone-based algorithm, the

relative separation RsepR (as opposed to just the distance from the original jet axis) is an

additional criterion: ρ < RsepR. We find:

Z = max

{

zmin,
r

r +R

}

if r < (Rsep − 1)R , (2.2)

Z = max

{

zmin,
r

RsepR

}

if r > (Rsep − 1)R . (2.3)
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Carrying out the integration in eq. (2.1) we arrive at the LO jet shape functions for quarks

and gluons:

ψq(r) =
CFαs
2π

2

r

(

2 log
1 − zmin

Z
− 3

2

[

(1 − Z)2 − z2
min

]

)

, (2.4)

ψg(r) =
CAαs
2π

2

r

(

2 log
1 − zmin

Z
−
(

11

6
− Z

3
+
Z2

2

)

(1 − Z)2

+

(

2z2
min − 2

3
z3
min +

1

2
z4
min

))

+
TRNfαs

2π

2

r

((

2

3
− 2Z

3
+ Z2

)

(1 − Z)2

−
(

z2
min − 4

3
z3
min + z4

min

))

. (2.5)

In the zmin → 0 limit eqs. (2.4) and (2.5) reduce and we recover the previously known

results [15]. Note that zmin is implemented in the spirit of Rsep in that its application

in analytic calculations is simple only to LO. There is an implicit ‘plus-prescription’ in

these results when calculating moments of physical quantities, as we have not considered

the virtual corrections in the forward direction. Hence, the result is not applicable for

r = 0 and does not have the correct normalization when integrated. However, the shape is

reflective of final-state parton splitting and, when needed, for the leading order calculation

one may apply a cutoff for small r and normalize via first-bin subtraction.

In contrast to the case of e+ + e− annihilation, hadronic scattering is accompanied by

copious initial-state radiation (ISR) that can fall within the jet cone. While the contribution

of the ISR is small for small values of r/R, it gives an essential contribution at larger angles.

A simple estimate based on a dipole radiation and the kinematics of the hard parton - soft

gluon coincidence within a cone [15], similar for both quark and gluon jets, yields:

ψi(r) =
Cαs
2π

2r

(

1

Z2
− 1

(1 − zmin)2

)

, (2.6)

Again, the ‘plus-prescription’ to account for the r = 0 point is not explicitly shown. In

eq. (2.6) C ≃ CF ≈ CA/2.

The leading order calculation is most appropriate for the rare, hard splittings of a

very high momentum jet. The use of a running coupling improves the numerical results,

providing larger weight for softer events. We employ a running αs evaluated at the largest

kT in the problem, µ = r(1 − Z)ET for the jet splitting and µ = (1 − Z)ET for the initial

state radiation [15].

2.1.2 Resummation — All orders and multiple emission

As r → 0, in the collinear limit of parton splitting, the leading order contributions to

the jet shape diverge, see eqs. (2.4), (2.5) and (2.6). In fact, all orders in the perturbative

expansion diverge, including powers of log r in the form αns log2n−1 r. With plentiful parton

showering, it becomes increasingly less likely that any particular quark and gluon will be

coincident with the jet axis. Quantitatively, this is described by a Sudakov form factor.

The energy density at small angles is dominated by the hard parton in the splitting. If

there is a splitting that leaves the hard parton at an angle r1, a subsequent splitting at
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r2 < r1 will not contribute to the energy density at r2. Multiple independent splitting

follows a Poisson distribution, hence, the probability of energy flow at an angle less than r

is exponentially suppressed by the integrated probability at angles greater than r, i.e.:

P (< r) = exp(−P1(> r)) (2.7)

= exp

(

−
∫ R

r
dr′ ψcoll(r

′)

)

. (2.8)

This only applies for soft emissions which do not take away (much) momentum, i.e. at lead-

ing log accuracy. Improvement can be obtained at modified leading log accuracy (MLLA),

when the running of the coupling constant is included in P1. We don’t take other (e.g.

recoil or kinematic constraints) effects in evaluating the Sudakov form factor in the soft

collinear approximation.

The resummed ψresum(r) = d
drP (< r) and we carry out the integration in eq. (2.8),

including the running αS(rET ), to obtain modified leading logarithmic accuracy (MLLA).

Note that αs(µ) = 1/(2β0 log µ
ΛQCD

), with 4πβ0 = b0 = 11
3 CA − 4

3TRNf . First, take the

small r limit in eqs. (2.4), (2.5) and (2.6), keeping terms ∝ 1/r and ∝ 1/r log(1/r). Based

on Z = max(zmin, r/R), in this limit we have two kinematic domains. For r > zminR the

results are similar to the known case of no acceptance cut-off and reduce to the known

results if zmin = 0:

Pq(r > zminR) = exp

(

2CF log
R

r
f1

(

2β0αs log
R

r

)

−
[

3

2
CF − CR2 − c>q (zmin)

]

× f2

(

2β0αs log
R

r

))

, (2.9)

Pg(r > zminR) = exp

(

2CA log
R

r
f1

(

2β0αs log
R

r

)

−
[

1

2
b0 −CR2 − c>g (zmin)

]

× f2

(

2β0αs log
R

r

))

. (2.10)

It is useful to employ the same notation as in [15] and facilitate the comparison to the case

of no kinematic cuts: f1(x) = log(1 − x)/(2πβ0), and f2(x) = (1 − log(1 − x)/x)/(2πβ0).

The zmin- dependent corrections are isolated as follows:

c>q (r > zminR; zmin) = 2CF log(1 − zmin) +
3

2
CF z

2
min , (2.11)

c>g (r > zminR; zmin) = 2CA log(1 − zmin) + CA

(

2z2
min − 2

3
z3
min +

1

2
z4
min

)

−TRNf

(

z2
min − 4

3
z3
min + z4

min

)

. (2.12)

When r < zminR the integration in eq. (2.8) has to be split in two regions: r′ ∈ (r, zminR)

and r′ ∈ (zminR,R). The second integral is trivially obtained from the case that was just

considered above, eqs. (2.9) and (2.10), with the substitution r = zminR. When combined
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with the first integral, it yields:

Pq(r < zminR) = Pq(r > zminR; r = zminR) × exp

(

−
[

3

2
CF − c<q (zmin)

]

×f2

(

2β0α̃s log
zminR

r

))

, (2.13)

Pg(r < zminR) = Pg(r > zminR; r = zminR) × exp

(

−
[

1

2
b0 − c>g (zmin)

]

×f2

(

2β0α̃s log
zminR

r

))

. (2.14)

Here, we denote by α̃s = αs(zminRET ), as opposed to αs = αs(RET ), and:

c<q (r < zminR; zmin) = 2CF log

(

1 − zmin

zmin

)

+ 3CF zmin , (2.15)

c<g (r < zminR; zmin) = 2CA log

(

1 − zmin

zmin

)

+ CA

(

4zmin − z2
min +

2

3
z3
min

)

−TRNf

(

2zmin − 2z2
min +

4

3
z3
min

)

. (2.16)

Note that the Sudakov form factors evaluated here will regulate any collinear divergence

present in ψcoll.

2.1.3 Power corrections — An estimate of non-perturbative effects

Inclusion of the running coupling constant under the momentum transfer integrals yields

contributions from regions in which Q ∼ ΛQCD or lower, i.e. there is a fundamental non-

perturbative contribution to all of the integrals. An estimate of these power correction

effects with finite acceptance gives the following result:

ψPC(r) =
2CR
2π

2

r

Q0

rET

(

ᾱ0
′(Q0, kmin) − αs(µ) − 2β0αs(µ)2

(

1 + log
µ

Q0

))

+
2CR
2π

2

r

kmin

rET

(

αs(µ) + 2β0αs(µ)2
(

1 + log
µ

kmin

))

, (2.17)

where CR = CF , CA for quarks or gluons, respectively. In eq. (2.17) kmin = zminrET and

µ is the renormalization scale. The term ∝ ᾱ0
′(Q0, kmin) depends on the parametrized

non-perturbative contribution, defined as:

ᾱ0
′(Q0, kmin) =

1

Q0

∫ Q0

kmin

dk αs(k) , (2.18)

with Q0 representing the non-perturbative scale. In our numerical calculation we use

ᾱ0
′(2GeV, 0) = 0.52 , ᾱ0

′(3GeV, 0) = 0.42 (2.19)

from ref. [18, 15] and a parametrization of the strong coupling constant at small momentum

transfer given in ref. [19]. The terms ∝ αs(µ), α2
s(µ), come from subtracting the perturba-

tive component in the non-perturbative region [18]. Finally, the term ∝ kmin results from

the introduction of finite acceptance, zmin.
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A similar expression is derived for initial-state radiation:

ψi,PC(r) =
2C

2π
2r
Q0

ET

(

ᾱ0
′(Q0, k

′
min) − αs(µ) − 2β0αs(µ)2

(

1 + log
µ

Q0

))

+
2CR
2π

2r
k′min

ET

(

αs(µ) + 2β0αs(µ)2
(

1 + log
µ

k′min

))

, (2.20)

where k′min = zminET , and C ≃ CF ≈ CA/2. At lower jet energies the power corrections

are, in fact, sizable even at large r. This suggests that if there is deviation between the

theoretical results and the experimental data it may be largely due to incomplete consid-

eration of non-perturbative effects. We stress that the generalization of power corrections

to finite acceptance implies that these should be taken into account only for zminrET < Q0

or zminET < Q0 for final-state and initial-state radiation, respectively.

2.1.4 Total contribution to the jet shape

As indicated before, the resummed jet shape at small r/R is evaluated as ψresum(r) =
d
drP (r) = ψcoll(r)P (r). Taking all contributions to the jet shape and ensuring that there

is no double counting at small r/R to O(αs) we find:

ψ(r) = ψcoll(r) (P (r) − 1) + ψLO(r) + ψi,LO(r)

+ψPC(r) + ψi,PC(r) . (2.21)

On the right-hand-side of eq. (2.21) the first term comes from Sudakov resummation

with subtraction of the leading 1/r, (1/r) log(1/r) contribution at small r/R to avoid

double counting with the fixed order component of the differential jet shape. The sec-

ond and third terms represent the leading-order contributions in the final-state and

the initial-state. The last two terms represent the effect of power corrections. In a

full calculation the relative quark and gluon fractions fq + fg = 1 are also needed:

ψ(r;ET ) = fq(ET ,
√
s)ψq(r;ET ) + fg(ET ,

√
s)ψg(r;ET ). These fractions are calculated

in appendix A alongside the demonstration of the feasibility of jet cross section and differ-

ential jet shape measurements at
√
s = 5.5 TeV.

If the resummed part completely dominates the area under ψ(r) in eq. (2.21), i.e.

the power corrections and the fixed order result affect only the large r/R “tails”, the

theoretically calculated differential jet shape is properly normalized. In reality, this is not

the case and the first correction, O(α2
s), arises from ψcoll(r)(P (< r) − 1) = ψcoll(r)(1 +

CRαs(· · · ) + · · · − 1). It will be larger for gluon jets when compared to quark jets, CA vs

CF , and for lower transverse energies. The normalization can then be ensured via

ψ(r) → ψ(r) + Norm × ψcoll(r) ln(P (< r)) , (2.22)

where Norm is determined numerically. We note that in going to higher orders in pertur-

bation theory, appropriately matched by Sudakov resummation, there should be no need

for normalization corrections. We stress that to achieve a robust theoretical description

of the differential jet shape all contributions to ψ(r) from eq. (2.21) should be included.

In appendix B we elucidate their relative strength using numerical examples. We also

investigate the dependence of the shape on Rsep and the non-perturbative scale Q0.
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Figure 1: (Color online) Comparison of numerical results from our theoretical calculation to

experimental data on differential jet shapes at
√
s = 1960GeV by CDF II [20]. Insert shows the

ET dependence of Rsep.

2.2 Comparison to the Tevatron data

In figure 1 we show comparison of the theoretical model for the jet shape, eq. (2.21), to

the experimental measurements in p+p̄ collisions at
√
s = 1960 GeV at Fermilab from

Run II (CDF II) [20]. Our numerical results include all contributions from leading order,

resummation and power corrections with Q0 = 2GeV. The insert shows the variation of the

parameter Rsep with the transverse energy of the jet. At high jet ET our theoretical model

gives very good descriptions of the large r/R experimental data with Rsep = 1.3− 1.4. For

ET = 45 − 55 GeV the largest meaningful value Rsep = 2 can describe the data fairly well,

except at very small r/R region. Extended discussion of the various contributions to the

differential jet shape is given in appendix B.

We note that for r/R≪ 1 and a large gluon jet fraction in conjunction with moderate

ET ≤ 50 GeV there is still deviation between the data and the theory, e.g. the top panel of

figure 1. This is likely related to the need for significant corrections, eq. (2.22), to ensure the
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proper normalization of ψ(r/R). Such corrections, in turn, point to NLO effects, a possible

breakdown of our soft collinear jet splitting approximation for the Sudakov resummation

and non-perturbative effects. Note that even Monte Carlo event generators have to be tuned

to describe this data [20]. For the purpose of our manuscript the deficiencies in this specific

part of phase space are not essential since, as we will see in section 4, the experimental

signatures of jet propagation in the QGP are most pronounced in the complementary

r/R ∼ 1 domain. One simply has to keep in mind that the description of r/R < 0.25

ψ(r/R) in the vacuum allows for further theoretical improvement.

2.3 Predictions for the LHC

We employ the theoretical model that describes the CDF II data and apply the same

transverse energy-dependent Rsep parameter to obtain predictions for the LHC at
√
s =

5.5 TeV. The emphasis here is to produce a baseline in p+p reactions for comparison to

the full in-medium jet shape in Pb+Pb collisions. The essential difference in going from

the Tevatron to the LHC is in the production of hard jets. At the higher collision energy

we observe a greater contribution from gluon jets relative to quark jets, e.g. figure 12 in

appendix A. Therefore, for the same ET , jets at the LHC are expected to be slightly wider

than at the Tevatron.

Figure 2 shows our numerical results for the jet shape for four different energies ET =

50, 100, 250 , 500 GeV and two cone radii R = 0.7, 0.4 in p+p collisions at
√
s = 5.5 TeV at

LHC. An interesting observation is that, when plotted against the relative opening angle

r/R, these shapes are self-similar, i.e. approximately independent of the absolute cone

radius R. One of the main theoretical developments in this paper is the analytic approach

to studying finite detector acceptance effects or experimentally imposed low momentum

cuts. In figure 2 this is illustrated via the selection of zmin = pT min/ET = 0.2, 0.1, 0.04

and 0.02 (pT min = ωmin = 10 GeV). Eliminating the soft partons naturally leads to a

narrower branching pattern. However, for this effect to be readily observable 10 − 20% of

the jet energy, going into soft particles, must be missed. Thus, even with pT min ∼few GeV

cuts in Pb+Pb collisions at the LHC aimed at reducing or eliminating the background

of bulk QGP particles that accidentally fall within the jet cone, the alteration of ψ(r/R)

is expected to be small. We also studied the integral jet shape Ψint(r/R), shown in the

inserts of figure 2, as a tool for identifying kinematic and dynamic effects on jets [17]. Only

when large differences exist between two ψ(r/R) for r/R < 0.4 these will be reflected in

the integral jet shape. If the differences are pronounced in the r/R > 0.4 region, as is

typically the case for heavy ion reactions, Ψint(r/R) will be practically insensitive to the

QGP effects on jet propagation.

It is important to also note in figure 2 that there is a dramatic change in the differential

jet shape in going from small to large transverse energies even in p+p reactions. This is

best demonstrated on a 3D-plot, where the volume of the jet cone is normalized to unity.

Examples of dψ(r/R)
2πrdr for ET = 20, 100, 500 GeV are given in figure 3. We have used

R = 0.7 and ωmin = 0. It is obvious that development of detailed theoretical models and

their validation against experimental data in nucleon-nucleon collisions are necessary before
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Figure 2: (Color online) Numerical results for the differential jet shapes in p+p collisions at√
s = 5.5TeV at the LHC. Solid lines represent jet shapes with R = 0.7, ωmin = 0 GeV, dashed

lines stand for jet shapes with R = 0.4, ωmin = 0GeV, and dashed-dotted lines are for jet shapes

with R = 0.7, ωmin = 10GeV. The inserts show integrated jet shapes Ψint(r;R).

any credible conclusions about the modification of the QCD jets in the QGP medium can

be drawn.

3. Medium-induced contribution to the jet shape

The principal medium-induced contribution to a jet shape comes from the radiation pattern

of the fast quark or gluon, stimulated by their propagation and interaction in the QGP.
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20GeV (top panel), ET = 100GeV (bottom-left panel), and ET = 500GeV (bottom-right panel)

with R = 0.7, ωmin = 0GeV in p+p collisions with
√
s = 5500GeV at the LHC. From low jet

energy to high jet energy, jet shape becomes much steeper.

There is a simple heuristic argument which allows one to understand how interference

and coherence effects in QCD amplify the difference between the energy distribution in a

vacuum jet and the in-medium jet shape [21]. Any destructive effect on the integral average

parton energy loss ∆Erad, such as the Landau-Pomeranchuk-Migdal effect, can be traced

at a differential level to the attenuation or full cancellation of the collinear, kT ≪ ω, gluon

bremsstrahlung:

∆Erad
LPM suppressed ⇒ dIg

dω
(ω ∼ E)LPM suppressed

⇒ dIg

dωd2kT
(kT ≪ ω)LPM suppressed , (3.1)

and we indicate the parts of phase space where the modification of the incoherent

dIg/dωd2kT is most effective.
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Indeed, detailed derivation of the coherent inelastic parton scattering regimes in QCD

was given in [6]. In all cases, the origin of the LPM suppression can be traced to the

cancellation of the collinear bremsstrahlung. The destructive quantum interference is most

prominent for final-state radiation, where the large-angle gluon bremsstrahlung was orig-

inally discussed in ref. [22] to first order in opacity. Even though to carry out realistic

simulations to higher orders in opacity with full geometry will require computational power

beyond what is currently available, we first present an analytic proof that a cone-like pat-

tern of medium-induced emission persists to all orders in the correlations between multiple

scattering centers (elementary emitters) and we focus on the case of immediate interest:

light quark and gluon jets and final-state bremsstrahlung. Generalization to massive par-

tons can easily be achieved, see e.g. [23], but it is important to note that the effect of a

heavy quark mass versus the jet energy depends on the coherent scattering regime [6].

3.1 Radiative energy loss in the GLV formalism

In our calculation we will use the GLV formalism of expanding the medium-induced ra-

diation in the correlations between multiple scattering centers [6]. We first recall the

definitions of the Hard, Gunion-Bertsch and Cascade propagators in terms of the gluon

transverse momentum k and the transverse momentum transfers from the medium qi:

H =
k

k2
, C(i1i2···im) =

(k − qi1 − qi2 − · · · − qim)

(k− qi1 − qi2 − · · · − qim)2
,

Bi = H − Ci , B(i1···im)(j1···in) = C(i1···jm) −C(j1···jn) , (3.2)

The relevant inverse gluon formation times can be written as:

[τ f(i1i2···im)]
−1 = ω(i1i2···im) = [k+|C(i1i2···im)|2]−1 . (3.3)

For final-state radiation, the intensity spectrum reads:

k+dN
g(FS)

dk+d2k
=
CRαs
π2

∞
∑

n=1

[

n
∏

i=1

∫

d∆zi
λg(zi)

]





n
∏

j=1

∫

d2qj

(

1

σel(zj)

dσel(zj)

d2qj
− δ2(qj)

)





×
[

− 2C(1,··· ,n) ·
n
∑

m=1

B(m+1,··· ,n)(m,··· ,n) ×

×
(

cos

( m
∑

k=2

ω(k,··· ,n)∆zk

)

− cos

( m
∑

k=1

ω(k,··· ,n)∆zk

)) ]

, (3.4)

where
∑1

2 ≡ 0 and B(n+1,n) ≡ Bn are understood. In the case of final-state interactions,

z0 ≈ 0 is the point of the initial hard scatter and zL = L is the extent of the medium.

The path ordering of the interaction points, zL > zj+1 > zj > z0, leads to the constraint
∑n

i=1 ∆zi ≤ zL. One implementation of this condition would be ∆zi ∈ [ 0, zL −∑i−1
j=1 ∆zj ]

and it is implicit in eq. (3.4).

There is an obvious limit of the GLV radiative spectrum when L ≫ λg ≫ τf , where

λg is the mean free path of the gluon in a hot QGP. Here, the contributions of the cos(· · · )
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terms vanish after integration over the unobserved qi or ∆zi due to rapid oscillation. It is

easy to see in this limit for n=1 that,

k+dN
g

dk+
=
CRαs
π2

〈

L

λg

〉
∫

d2k

∫

d2q1 ×
〈

1

σel

dσel
d2q1

〉

[C2
1 − H2 + B2

1] . (3.5)

In the very high energy limit E → ∞, leading to large k phase space, a change of variables

k → k − q1 shows that the first two terms in eq. (3.5), cancel, leading to an incoherent

Bertsch-Gunion gluon emission in a hot QGP medium with 〈n〉 = L
λg

. By direct inspection

one can see that the n ≥ 2 terms do not contribute. In fact, it is easy to verify that

for any bremsstrahlung regime, initial-state, final-state and no hard scattering, this limit

holds [6]. More generally, in this limit it can be shown that the reaction operator R̂ → 0.

Naturally, for finite jet energies there will be corrections when k+dNg/dk+d2k is evaluated

numerically with actual kinematic bounds [9].

3.2 Collinear radiation in the GLV formalism

While the example given above illustrates that limits can be imposed and taken in the GLV

results, such limits are artificial in that the formation time of the gluon at the emission

vertex spans τf ∈ (0,∞). The Reaction Operator approach [6], i.e. the GLV formalism, is

not an approach of averages: it compares differentially τf to the separation between the

scattering centers. For example, even when k → 0 the formation time can be small or

large, depending on the momentum transfers for the medium. Let us investigate this case

in more detail: we note that k+ ≈ 2ω and k ≈ rωn̂, where r is the angle relative to the jet

axis. Here, n̂ is a unit vector transverse to the jet axis which defines the azimuthal angle

φ of gluon emission. Using the results of eq. (3.4), the 2D (φ, r) angular distribution of

gluons at n-th order in the correlated scattering expansion reads:

lim
r→0

ωdN g

dωdφdr
∝ ω





n
∏

j=1

∫

d2qj

(

1

σel(zj)

dσel(zj)

d2qj
− δ2(qj)

)





q1 + · · · + qn

(q1 + · · · + qn)2
· (3.6)

·
n
∑

m=1

ωr

(

qm+1 + · · · + qn

(qm+1 + · · · + qn)2
− qm + · · · + qn

(qm + · · · + qn)2

)

×

×
(

cos

(

m
∑

k=2

(qk + · · · + qn)
2

2ω
∆zk

)

− cos

(

m
∑

k=1

(qk + · · · + qn)
2

2ω
∆zk

) )

.

Here, we have already set r = 0 where possible. We can use this general notation as long

as we clarify certain special cases: for m = n we have cos[(qn+1 + qn)
2∆zn+1/2ω] ≡ 1.

For the transverse propagators and m we have ωr(qn+1 + qn)/(qn+1 + qn)
2 ≡ n̂. It is

know that the leading n = 1 contribution to final-state medium-induced radiation leads to

limr→0 ωdN
g/dωdφdr = 0 [22]. Our goal is to show that this result is general and holds to

any order in the expansion. Its implications are that there is very little overlap between the

techniques used to compute the “vacuum” and medium-induced contributions to the jet

shape. A general proof requires demonstration of the absence of unprotected divergences

for any set of momentum transfers {qi}, finiteness of the momentum transfer integrals as

qi → ∞ and a mechanism that kills the small-angle contribution.
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1. We first look at the large qi limit. The transverse propagator contribution itself in

eq. (3.7) behaves as ∼ 1/q2
i . Furthermore, irrespective of the small qi behavior of the

momentum transfer distribution from the medium, for large momentum transfers the

collisional cross section is suppressed by the Rutherford ∼ 1/q4
i behavior, ensuring

the finiteness of the integrals.

2. Next, we examine the potential singularity as |q1 + · · · + qn| → 0. The difference

in the LPM interference terms in this limit goes as O((q1 + · · · + qn)
2) and for the

most problematic transverse propagator term (m=1) even as O((q1 + · · ·+qn)
4). In

summary, not only is there no divergence in this case, but the integrand in eq. (3.7)

vanishes.

3. We now collect the interference phases associated with problematic propagators as

|qk + · · · + qn| → 0, 1 < k ≤ n. Expanding for a small net transverse momentum

sums we find that the singularity is canceled:

[

sin

k−1
∑

j=2

(qj + · · · + qn)
2

2ω
∆zj − sin

k−1
∑

j=1

(qj + · · · + qn)
2

2ω
∆zj

]

(qk + · · · + qn)
2

2ω
∆zk .

Actually, the lack of singularities persists also away from the small r limit.

4. With the integrand well behaved and all integrals finite we see that the phase

space factor r in the numerator is sufficient to ensure vanishing medium-induced

bremsstrahlung contribution at the center of the jet. It is assisted by partial can-

cellation from angular integrals of the type
∫

qi · qj f(qi,qj) dφij . It is only for the

special case of n̂ · (q1 + · · ·+qn) where the antisymmetric integrand under qi → −qi

for all i fully ensures the vanishing zero-angle radiative contribution.

This completes our proof that at any order in opacity

lim
r→0

ωdN g
med

dωdφdr
= 0 . (3.7)

Numerical simulations, using Monte-Carlo techniques, confirm independently that

dIg/dωd2k vanishes as k → 0 [9].

3.3 Numerical methods and QGP properties

Results relevant to the LHC phenomenology are calculated using full numerical evaluation

of the medium-induced contribution to the observed jet shapes and the modification of the

in-medium jet cross sections. Jet production, being rare in that σ(ET > ET min)TAA(b) ≪
1, follows binary collision scaling ∼ d2Nbin./d

2x⊥. In contrast, the medium is distributed

according to the number of participants density ∼ d2Npart./d
2x⊥. Soft particles that carry

practically all of the energy deposited in the fireball of a heavy ion collision cannot deviate a

lot from such scaling. We take into account longitudinal Bjorken expansion since transverse

expansion leads to noticeable corrections only in the extreme βT → 1 limit [24]. In our

approach all relevant finite time and finite kinematics integrals, such as the ones over the
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Class Central Mid-central Peripheral

b [fm] 3 8 13

Npart 361 165 18

dNg/dy 2800 1278 137

〈T (τ0)〉 [MeV] 751 693 426

〈mD(τ0)〉 [GeV] 1.89 1.73 1.07

〈λg(τ0)〉 [fm] 0.25 0.27 0.46

Table 1: Summary of the relevant energy loss parameters ind initial QGP properties for central,

semi-central and peripheral collisions at
√
s = 5.5TeV collisions at the LHC.

separation between the scattering centers ∆zi = zi− zi−1, the bremsstrahlung gluon phase

space ΛQCD < ω < Ejet., ΛQCD < k⊥ < 2ω,2 and the transverse momentum transfers

0 < qi <
√

s/4 =
√

mDEjet/2, are done numerically [6]. In our simulation we generated

in-plane jets, φjet−φreaction plane = 0. This is of little importance in central Pb+Pb collisions

(b=3 fm), where the medium effects on jet propagation are most pronounced, but in semi-

central (b=8 fm) and peripheral (b=13 fm) reactions this will lead to smaller than average

energy loss.

The evolving intrinsic momentum and length scales in the QGP expected to be cre-

ated at the LHC are determined as follows: we first estimate the QGP formation time

τ0 = 1/〈pT 〉 = 0.23 fm, where 〈pT 〉 ≈ 850 MeV is obtained from extrapolations to LHC

energies made by using Monte Carlo event generator results, fit to the CDF collabora-

tion data from
√
s = 1.8 GeV p+p̄ collisions [25]. Here we account for the observed

∼ 25% increase in the mean transverse momenta in going from N + N to A + A colli-

sions at RHIC. Gluons dominate the soft parton multiplicities at the LHC and their time-

and position-dependent density can be related to charged hadron rapidity density in the

Bjorken expansion model [26]:

ρ =
1

τ

d2(dNg/dy)

d2x⊥

≈ 1

τ

3

2

∣

∣

∣

∣

dη

dy

∣

∣

∣

∣

d2(dN ch/dη)

d2x⊥

. (3.8)

Here, dN ch/dη = κNpart./2 with κ ≈ 9 for
√
s = 5.5 TeV.

Table 1 summarizes characteristics of Pb+Pb collisions at the LHC and initial QGP

properties. An inelastic cross section σin = 65 mb has been used in an optical Glauber

model where necessary.

Assuming local thermal equilibrium one finds:

T (τ,x⊥) = 3
√

π2ρ(τ,x⊥)/16ζ(3) , τ > τ0 . (3.9)

The Debye screening scale is given by mD = gT , recalling that we work in the approx-

imation of a gluon-dominated plasma and Nf = 0. The relevant gluon mean free path

is easily evaluated: λg = 1/σggρ with σgg = (9/2)πα2
s/m

2
D. Note that in table 1 the

2This condition allows for the deflection of the jet and can be also derived from the finite rapidity range

constraint 0 < yg < yjet for the emitted gluon
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Figure 4: (Color online) Schematic illustration of the cone radius R and the particle/tower pT /

ET selection. The measured energy is the one that comes from particles with pT > ωmin and within

R.

quoted initial mean temperatures, Debye screening scales and gluon mean free paths are

obtained as averages with the binary collisions weight TAA(x⊥; b). In our evaluation we

use gs = 2.5, (αs = 0.5) to describe the scattering of the jet with the medium but the

QGP-induced bremsstrahlung is calculated with a running αs(kT ) for the emission vertex,

similar to the MLLA approach for the vacuum jet shapes.

Evaluation of the medium-induced energy loss and its contribution to jet shapes is

numerically expensive. Exact results have been obtained only for Ejet = 20, 100 and

500 GeV. We interpolate for other values of interest.

3.4 Energy loss distribution

A consistent energy loss theory provides complete information for the differential distribu-

tion of the lost ∆Erad, i.e. the bremsstrahlung spectrum in eq. (3.4). The main point that

we make here is that this distribution is completely determined by the properties of the

QGP and the mechanisms of energetic quark and gluon stopping in hot and dense matter.

Therefore, selecting different jet radii R and pT min of the particles will significantly alter

both the jet shape and the amount of energy lost by the hard parton which can be recov-

ered in the experimental measurement. In contrast, we have seen in figure 2 that the jet

shapes scale approximately as a function of r/R, i.e. they are independent of the selection

of cone opening angle R. The jet cross section weakly depends on R, unless R → 0. Fi-

nally, zmin = 0.1 − 0.2 is necessary to noticeably alter the jet shape, implying that ∼ 20%

of the parent parton energy has to be missed via pT min cuts to observe significant effects

on ψvac(r).

Experimentally, a clear strategy will be to use the leverage arms provided by R (= Rmax

in the evaluation of the ∆Erad) and pT min (= ωmin in the evaluation of the ∆Erad) to
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Figure 5: (Color online) 3D plot for the ratio of the energy that a partons loses inside a jet

cone of opening angle Rmax with ω > ωmin to the total parton energy. We have chosen a jet of

energy Ejet = 20GeV in b = 3 fm Pb+Pb collisions at LHC and varied the jet radius Rmax and the

acceptance cut ωmin. The upper surface is for a gluon jet and the lower surface is for a quark jet.

determine the distribution of the lost energy. This is illustrated schematically in figure 4.

Theoretically, the first quantity to be calculated is:

∆Ein

E
(Rmax, ωmin) =

1

E

∫ E

ωmin

dω

∫ Rmax

0
dr

dIg

dωdr
(ω, r) . (3.10)

We present in figure 5 this fractional energy loss for a quark jet and a gluon jet of energy

Ejet = 20 GeV inside a jet cone of radius Rmax and with acceptance cut ωmin. Increasing

Rmax or decreasing ωmin we will recover more of the parent parton energy, lost via gluon

bremsstrahlung. We note that in figure 5 the mean energy loss was calculated as an average

over the probability distribution P (ǫ;E) [27], reflective of multi-gluon fluctuations:

〈ǫ〉 =

〈

∆E

E

〉

=

∫ 1

0
dǫ ǫP (ǫ;E) . (3.11)

For large fractional energy losses, such as in the illustrative example of a 20 GeV jet in

central Pb+Pb collisions at the LHC, ∆Eg/∆Eq is much smaller than the asymptotic ratio

CA/CF = 9/4 due to the kinematic constraint ∆E < E [27].

The separate dependence of ∆Ein(Rmax, ωmin)/E on the cone radius and the momen-

tum acceptance cut is more clearly illustrated in figure 6. We show central, mid-central and

peripheral collisions, impact parameters b = 3, 8, 13 fm, respectively, in Pb+Pb reactions

at LHC at nominal
√
s. We notice that, not surprisingly, the ratio ∆Ein(Rmax, ωmin)/E

goes down at larger impact parameters because the energy loss of the jet decreases in pe-

ripheral collisions. More importantly, at each impact parameter there is a variation of the

amount of the bremsstrahlung energy, recovered in the cone. This is precisely the variation

that will map on the Rjet
AA(Rmax, ωmin) observable. For example, in the limit of a very
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Figure 6: (Color online) 2D projections of eq. (3.10) The left panel shows the fractional energy loss

dependence on the jet radius Rmax (ωmin = 0) and the right panel shows this dependence versus

the acceptance cut ωmin (Rmax = R∞). A gluon jet of Ejet = 20GeV in b = 3, 8, 13 fm Pb+Pb

collisions at LHC was used as an example.

small opening angle and/or large momentum cut to eliminate the QGP-induced radiation

the suppression should approximate that of leading hadrons (up to differences arising from

the possibly softer particle spectra due to fragmentation):

RjetAA(Rmax → 0 and/or ωmin → E) = Rleading parton
AA

≈ Rh
±

AA . (3.12)

One can see that the typical choices, R = 0.4 and ωmin = 2GeV are a good starting point

to explore the variable quenching of jets.

4. Tomography of jets in heavy ion collisions

The purpose of this section is to relate the theory of jet propagation in the QGP to

experimentally measurable quantities.

4.1 Experimental observables

An essential ingredient that controls the relative contribution of ψvac.(r/R) and

ψmed.(r/R) = (1/∆Erad)dIg/dr to the observed differential jet shape in heavy ion reactions

and also determines the attenuation of the jet cross sections is:

f ≡ f

(

R

R = R∞
,

ωmin

ωmin = 0

)

=
∆Erad

{

(0, R); (ωmin, E)
}

∆Erad {(0, R∞); (0, E)} , (4.1)

the fraction of the lost energy that falls within the jet cone, r < R, and carried by gluons of

ω > ωmin relative to the total parton energy loss without the above kinematic constraints.

If this fraction is known together with the probability distribution P (ǫ) for the parton

energy loss the medium-modified jet cross section per binary N + N scattering can be

calculated as follows:

σAA(R,ωmin)

d2ETdy
=

∫ 1

ǫ=0
dǫ
∑

q,g

Pq,g(ǫ)
1

(1 − (1 − fq,g) · ǫ)2
×
σNNq,g (R,ωmin)

d2E′
Tdy

, (4.2)
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where E′
T = ET /(1 − (1 − fq,g) · ǫ). The (1 − fq,g) · ǫ factor accounts for the total

”missed” energy in a jet cone measurement, which necessitates E′
T > ET , and the Ja-

cobian J = |d2E′
T /d

2ET | is properly accounted for. In this paper possible fluctuations

of fq,g independent of ǫ are not considered. Simple analytic limits illustrate the physics

represented by eq. (4.2): if there is no energy loss, P (ǫ) = δ(ǫ), J = 1 and the cross

section is unaltered. In the opposite limit, P (ǫ) = δ(ǫ − 1), the quenching of jets, if any,

is completely determined by the fraction of the lost energy fq,g that is recovered in the

experimental acceptance. When fq,g = 1 once again there will be no attenuation of jets

and when fq,g → 0 our result approximates the inclusive particle RAA(pT ) [27], see also

eq. (3.12).

Next, we obtain the full jet shape, including the contributions from the vacuum and

the medium-induced bremsstrahlung:

ψtot. (r/R) =
1

Norm

∫ 1

ǫ=0
dǫ
∑

q,g

Pq,g(ǫ)
1

(1 − (1 − fq,g) · ǫ)3

×
σNNq,g (R,ωmin)

d2E′
Tdy

[

(1 − ǫ) ψq,gvac. (r/R) + fq,g · ǫ ψq,gmed. (r/R)
]

. (4.3)

We recall that, by definition, the area under any differential jet shape, ψtot. (r/R),

ψvac. (r/R) and ψmed. (r/R), is normalized to unity. Integrating over r in eq. (4.3), it

is easy to see that the correct “Norm” is the quenched cross section, eq. (4.2). The inter-

ested reader can independently carry out the analysis of the simple limiting cases and gain

insight into the dominant contribution to the full jet shape. Proper treatment of isospin is

implicit in eqs. (4.2) and (4.3).

4.2 Energy sum rule

Sum rules provide useful integral representation of conservations laws, originat-

ing from symmetries in QCD. One such example is momentum conservation in

independent fragmentation:

∑

h

∫ 1

0
zDh/q,g(z,Q

2) dz = 1 , (4.4)

where z = pT,h/pT,q(g) is the momentum fraction of parent partons carried by fragmenta-

tion hadrons. The same sum rule will hold in the presence of a medium since the total

momentum of the partons must be conserved irrespective of whether they are propagating

in vacuum or in the QGP with/without medium-induced bremsstrahlung [27, 22]. For jets,

taking a monochromatic pulse in the vacuum,

1

σ

σNN

d2ET
= δ2(ET − E0) , (4.5)

we can easily verify that in the presence of a QGP
∫

d2ET
1

σ

σAA(R→ ∞, ωmin → 0)

d2ET
ET = E0 , (4.6)

in case of perfect experimental acceptance. More generally, only a fraction, 1− (1− f)〈ǫ〉,
of E0 is recovered.
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Figure 7: (Color online) Nuclear modification factor Rjet

AA
(Rmax, ωmin) as a function of the jet

transverse energy, ET , at impact parameters b = 3 fm (circle), b = 8 fm (square) and b = 13 fm

(diamond) in Pb+Pb collisions with
√
s = 5.5TeV.

4.3 Numerical results

Combining our full theoretical model for the jet shape and the jet cross section in heavy

ion collisions with realistic numerical simulations of parton propagation in the QGP, see

section 3.3, we first evaluate the nuclear modification factor Rjet
AA(Rmax, ωmin) in Pb+Pb

collisions with center of mass energy
√
s = 5.5 TeV at the LHC. Figure 7 illustrates the

attenuation of the measured jet rate as a function of the jet energy ET for different centrality

classes. We use impact parameters b = 3, 8, 13 fm in conjunction with a jet cone radius

Rmax = 0.4 and no acceptance cut (ωmin = 0 GeV). The evolution of Rjet
AA(Rmax, ωmin) for

jets is similar to the one for leading particles in that lnRAA ≈ −κN2/3
part. [27]. However, κ

will depend on the selection of Rmax and ωmin in addition to the steepness of the underlying

jet spectra and the properties of the QGP. We recall that the energy of the jet that will be

redistributed out of the cone is ǫ(1−f), see eq. (4.2), and the variation of its quenching with

centrality is related to the fractional parton energy loss ǫ = ∆E/E and its fluctuations,

given by P (ǫ).

Figure 8 demonstrates the sensitivity of Rjet
AA(Rmax, ωmin) to the properties of the

medium-induced gluon radiation through the independent variation of ωmin and Rmax,

advocated in this paper. For a fixed impact parameter, b = 3 fm, the top panel shows

a study of the quenching strength versus the jet cone radius when ωmin = 0 GeV. In the

approximations that we employ Rmax = 2 is the upper bound of the medium-induced

bremsstrahlung opening angle relative to the jet and, consequently, constitutes perfect

experimental acceptance. In this case there is no deviation from binary collisions scaling.

The smooth evolution of Rjet
AA(Rmax, ωmin) with decreasing Rmax is a signature of the large-

angle gluon radiation pattern in the QGP [6, 22]. Note that if dIg/dωdr were predominantly

collinear, there would be no deviation from unity. For Rmax ≤ 0.2 the magnitude of jet

quenching approaches the suppression for leading hadrons. A good starting point is a

cone radius selection Rmax = 0.4 − 0.7 if the experimental statistics allows for positive
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Figure 8: (Color online) ET -dependent nuclear modification factor Rjet

AA
(Rmax, ωmin) for different

jet cone radii Rmax (top panel) and at different acceptance cuts ωmin (bottom panel) in b = 3 fm

Pb+Pb collisions at
√
s = 5.5TeV.

identification of 30% to a factor of 2 variation in the measured cross section. In the

bottom panel of figure 8 we present the sensitivity of jet attenuation to the minimum

particle momentum/calorimeter tower energy deposition cut ωmin. For a finite Rmax = 0.7

even if ωmin = 0 GeV Rjet
AA(Rmax, ωmin) does not reach unity, see our discussion above.

The largest variation in the quenching strength is observed between ωmin = 2 GeV and

ωmin = 5 − 10 GeV, and reflects the typical energy of the stimulated gluon emissions.

We emphasize that, in the GLV approach [6], partons lose energy through ∼ few GeV

bremsstrahlung gluons [27]. For ωmin > 10 GeV, Rjet
AA(Rmax, ωmin) approaches again the

characteristic leading particle suppression. In summary, for the same centrality, ET and√
s the continuous variation of quenching values may help differentiate between competing

models of parton energy loss [28], thereby eliminating the order of magnitude uncertainty

in the extraction of the QGP density.

Detailed investigation of Rjet
AA(Rmax, ωmin) can also indicate whether “elastic” 2 → 2

processes, such as collisional energy loss [29], or “inelastic” 2 → 2 + n processes, such as

bremsstrahlung [2] and hadron dissociation in the QGP [30], dominate the inclusive particle

and particle correlation quenching. If the energy loss per interaction in the first scenario
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Figure 9: (Color online) The vacuum and medium-induced only jet shape for ET = 20GeV (top

panel) and ET = 100GeV (bottom panel) at impact parameters b = 3, 8, 13 fm in Pb+Pb collisions

at the LHC. Two jet cone radii, R = 0.7 and 0.4 are shown.

∆Ecoll./E ≤ 5%, the recoil parton form the medium will accelerate almost transversely

relative to the jet axis and will not be part of the jet for any reasonable selection of Rmax.

Therefore, for collisional energy loss, in contrast to the well-defined evolution of the jet

suppression with cone radius and the acceptance cut seen in figure 8, the cross section

attenuation will be large and constant and will approximate the quenching of leading

hadrons. Note that Rjet
AA < 1 has also been observed in Monte-Carlo silumatios of jet

quenching [31].

We now turn to the numerical results for the jet shape in Pb+Pb collisions at
√
s =

5.5 TeV at the LHC. In figure 9 we first explore the difference between the vacuum and the

medium-induced only (ET given for the parent parton) ψ(r/R) as a function of the impact

parameter, jet energy, and the cone radius. We note that in central heavy ion reactions for

lower ET and, in particular, for R ≥ 0.7 the two differential shapes can be quite similar.

The differences become more pronounced for smaller jet radii where the experimental

acceptance will subtend the part of phase space with the most effective cancellation of the

collinear medium-induced radiation [22]. It is interesting to observe that in going to more

peripheral collisions ψmed.(r/R) becomes slightly wider. The underlying reason is that the
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Figure 10: (Color online) Comparisons of the jet shape in vacuum, the medium-induced jet

shape, and the total jet shape for cone radii R = 0.7 and R = 0.4 and four different energies

ET = 20, 50, 100, 200GeV, respectively, in central Pb+Pb collisions at the LHC.

LPM destructive interference between the radiation induced by the large Q2 scattering and

the radiation induced by the subsequent interactions in the QGP determines the angular

distribution in the bremsstrahlung spectrum. Thus, a small medium size facilitates the

resulting cancellation for gluons of large formation time. A general observation is that the

medium tends to redistribute the flow of energy more evenly inside the jet cone, especially

for large r/R→ 1.

The pattern of energy flow for in-medium jets is shown in figure 10 together with

ψvac.(r/R) and ψmed.(r/R) for comparison. We used ET = 20 GeV to 200 GeV and R = 0.4

to 0.7 to cover a wide range of measurements that will become accessible during the first

year of heavy ion running at the LHC. One observes that there is no significant distinction

between the jet shape in the vacuum and the total in-medium ψ(r/R). The underlining

reason for this surprising result is that although medium-induced gluon radiation produces

a broader ψmed.(r/R), this effect is offset by the fact that the jets lose a finite amount of

their energy, see figures 5 and 6. Furthermore, when part of the lost energy is missed due

to finite experimental acceptance, the required higher initial virtuality jets are inherently

narrower, see figures 2 and 3.

In table 2 we show the mean relative jet radii 〈r/R〉 in the vacuum and in the QGP

medium created at the LHC for two different cone selections R = 0.4 and R = 0.7 and

four transverse energies ET = 20, 50, 100, 200 GeV. We see that in the realistic numerical

simulation there is very little < 10% increase in the magnitude of this observable. The

difference is slightly larger for a smaller cone, since it emphasizes the large-angle character

of the medium-induced radiation [6, 22]. Therefore, a rough 1-parameter characterization

of energy flow in jets will not resolve the effect of the QGP medium. It can, however,
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R = 0.4 Vacuum Complete E-loss Realistic case

〈r/R〉, ET = 20GeV 0.41 0.55 0.45

〈r/R〉, ET = 50GeV 0.35 0.48 0.38

〈r/R〉, ET = 100GeV 0.28 0.44 0.32

〈r/R〉, ET = 200GeV 0.25 0.40 0.28

R = 0.7 Vacuum Complete E-loss Realistic case

〈r/R〉, ET = 20GeV 0.41 0.44 0.42

〈r/R〉, ET = 50GeV 0.33 0.39 0.37

〈r/R〉, ET = 100GeV 0.27 0.34 0.29

〈r/R〉, ET = 200GeV 0.24 0.31 0.26

Table 2: Summary of mean relative jet radii 〈r/R〉 in the vacuum, with complete energy loss, and

in the QGP medium. Shown are results for cone radii R = 0.4 and R = 0.7 and transverse energies

ET = 20, 50, 100, 200GeV at
√
s = 5.5TeV central Pb+Pb collisions at the LHC.

exclude simplistic scenarios of full jet stopping in the QGP that lead to 〈r/R〉 growth by

as much as 60%. It is also important to stress that the QGP is rather “gray” than “black”

and only a fraction of the energy of the parent paron is lost via stimulated gluon emission.

The effect of even a moderate ∆Ein(Rmax, ωmin)/E can be amplified by the steeply falling

cross sections for the R
jet

AA(ET ;Rmax, ωmin) observable, see figure 8, but this is not the case

for 〈r/R〉.
Lastly, we point out where the anticipated jet broadening effects will be observed in

the differential shape by studying the ratio ψtot.(r/R)/ψvac.(r/R) in figure 11. We have

used the same transverse energies and cone radii as in figure 10. We recall that the small

r/R < 0.25 region of the intra-jet energy flow in p+p collisions in our calculation has

uncertainties associated with the normalization of the jet shape. In the moderate and

large r/R > 0.25 region our theoretical model gives excellent descriptions of the Fermilab

Run II (CDF II) data, as shown in figure 1. The QGP effects are manifest in the “tails”

of the energy flow distribution and for a cone radius R = 0.4 the ratio could reaches

∼ 1.75 when r/R→ 1. However, for experiments to observe this enhancement of the ratio

of the total jet shape in medium to jet shape in vacuum at r/R > 0.5, high statistics

measurements will be needed. This precision can hopefully be achieved with the large

acceptance experiments at the LHC.

5. Conclusions

The unprecedentedly high center of mass energies at the LHC will usher in a new era of

precision many-body QCD. The theory and phenomenology of jets in nuclear collisions are

expected to evolve as the new frontier in the perturbative studies of parton propagation

in the QGP [21]. In this paper we discussed three important aspects of such studies: a

generalization of the analytic approach for calculating differential jet shapes [15] that can

accommodate experimental acceptance cuts needed to isolate jets in the high multiplicity

environment of heavy ion collisions; the theory of the intra-jet energy flow redistribution
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Figure 11: (Color online) The ratios of total jet shape in heavy-ion collisions to the jet shape in

the vacuum for jet energies ET = 20, 50, 100, 200GeV. Two cone radii R = 0.7 (top panel) and

R = 0.4 (bottom panel) at b = 3 fm in Pb+Pb collision with
√
s = 5.5TeV were chosen.

through large-angle medium-induced gluon bremsstrahlung; and a comprehensive new set

of experimental observables that can help identify and characterize the mechanisms of

parton interaction in nuclear matter.

In elementary nucleon-nucleon collisions we compared our theoretical model to the

CDF II Tevatron data on jet shapes [20] and investigated the baseline ψvac.(r/R) at the

higher
√
s = 5.5 TeV at the LHC. We found that in the absence of a hot and dense QGP

matter these shapes are self-similar and approximately independent of the cone radius R.

Elimination of low momentum particles of up to ∼few GeV is not likely to significantly

alter the pattern of intra-jet energy flow for ET > 50 GeV jets. In nucleus-nucleus reactions

we demonstrated that the characteristic large-angle QGP-stimulated gluon emission [22]

persists to all orders in the correlation between the elementary bremsstrahlung sources.

We showed that this intensity spectrum can be fully characterized by the amount of the

lost energy that falls inside the jet cone (r < Rmax, ω > ωmin) and derived the medium

modification of the jet shapes and jet cross sections in the QGP, subject to an intuitive

energy sum rule.

To demonstrate the connection between the QGP properties, the mechanisms of parton
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interaction and energy loss in hot and dense matter, and a new class of jet-related exper-

imental observables, we carried out realistic simulations of quark and gluon production

and propagation in the medium created in relativistic heavy ion collisions at the LHC. We

introduced a natural generalization of the leading particle suppression to jets and showed

that it is a more differential and powerful tool that can be used to assess in approximately

model-independent way the characteristic properties of the induced gluon intensify spec-

trum. Consequently, in the future progress can be made toward identifying the set of

approximations [2, 5 – 7] that most adequately reflect the dynamics of hard probes in the

QGP. We also discussed how the evolution of R
jet

AA(Rmax, ωmin) with the jet cone radius

Rmax and the acceptance cut ωmin, or the lack thereof, can help differentiate between ra-

diative and collisional energy loss paradigms of light and heavy quark attenuation. The

theoretical approach, developed in this manuscript, allows to investigate the correlation be-

tween the quenching of jets and the in-medium modification of their shape. Surprisingly, up

to five-fold attenuation of the cross section corresponds to a rather modest ≤ 10% growth

of the mean relative cone radius 〈r/R〉. The anticipated broadening of jets is most readily

manifest in the periphery of the cone, r/R→ 1, and for smaller radii, e.g. Rmax = 0.4.

Further refinements in jet phenomenology, especially the consideration of jet cross

sections, should include cold nuclear matter effects, such as nuclear shadowing, the Cronin

effect, and initial state energy loss [32]. We finally note that the study of inclusive jet shapes

and cross sections in heavy ion collisions can easily be generalized to hadron, photon or

di-lepton tagged jets [13, 33, 34] with the benefit of additional constraints on the hard

process virtuality and the parton energy.
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A. Jet cross sections

In this paper we focus exclusively on large momentum transfer processes, Q2 ≫ Λ2
QCD, that

can be systematically calculated in the framework of a reliable theory, the perturbative

QCD factorization approach. Factorization not only separates the short- and long-distance

QCD dynamics but implies universality of the parton distribution functions (PDFs) and

fragmentation functions (FFs) and infrared safety of the hard scattering cross sections. For

hadronic collisions, one of the most inclusive processes is jet production. To lowest order

(LO) the invariant differential cross section reads [35]:

dσhahb

dycd2pTc

= K
∑

abcd

yd max
∫

yd min

dyd
φa/ha

(xa, µf )φb/hb
(xb, µf )

xaxb
× α2

s(µr)

s2
|Mab→cd|2 . (A.1)
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Figure 12: (Color online) Top panel: Inclusive jet cross section in p+p̄ collisions at the Tevatron√
s = 1.96GeV calculated to LO in PQCD and compared to the CDF run II data [37]. Insert shows

the fraction of gluon jets as a function of pT . Bottom panel: predicted baseline jet cross sections

in p+p collisions at the LHC at
√
s = 5.5TeV and 14TeV.

Here, s = (Pa + Pb)
2 is the squared center of mass energy of the hadronic collision and

xa = p+
a /P

+
a , xb = p−b /P

−
b are the lightcone momentum fractions of the incoming partons.

In this formulation, for massless initial-state quarks and gluons,

yd max(min) = +(−) ln

( √
s

mT d
− mT c

mT d
e+(−)yc

)

, (A.2)

where m2
Ti

= m2
i + p2

Ti
. In eq. (A.1) φi/hi

(xi, µf i) is the distribution function of parton

“i” in the hadron hi and µr and µf i are the renormalization and factorization and scales,

respectively. In this work calculations are done strictly in the collinear factorization ap-

proach and we use the CTEQ6.1 LO PDFs [36]. |Mab→cd|2 are the squared matrix elements

for ab→ cd partonic sub-processes.

Numerical results for inclusive jet cross sections in high energy hadronic collisions are

shown in figure 12, here pT = ET . The top panel compares the LO calculation, eq. (A.1),

to CDF data on jet cross sections in p + p̄ at
√
s = 1.96 TeV. Excellent agreement between

data and the theory using K = 1.5, independently extracted from the charged hadron
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h+ + h− differential cross section at the Tevatron. It indicates ∼ 50% next-to-leading

order correction. Alternatively, we have studied the sensitivity of the cross section to

the choice of the factorization and renormalization scales by varying µr = µf = pT /2,

pT and 2pT . Not surprisingly, the uncertainty is also on the order of ∼ 50%, similar to

the phenomenological K-factor. Jet shapes depend on the parton species, quarks versus

gluons, and the insert shows the fraction of quark jets versus pT at the Tevatron. The

bottom panel gives predictions for the corresponding jet cross sections at the LHC per

nucleon-nucleon collision for
√
s = 14 TeV and 5.5 TeV, without quenching. Insert shows

the increased fraction of gluon jets relative to the Tevatron.

We can now evaluate the feasibility of differential jet shape measurements at the LHC.

During the first three years of running, even at a fraction of the designed L = 1034 cm−2s−1,

LHC is expected to deliver an integrated luminosity of 10 fb−1 per year. In heavy ion col-

lisions, nominal L = 1027 cm−2s−1 is not expected to be achieved either. An integrated

luminosity of 1 nb−1 per year is a realistic projection. As shown in this paper, the an-

ticipated quenching factor for energetic jets depends on the selection of Rmax and ωmin.

In the limit of narrow jets RjetAA ≈ Rh
±

AA = 0.25 − 0.5 [27, 29]. Taking this into account,

but neglecting for the moment the complications associated with jet reconstruction in the

high particle multiplicity environment of heavy ion collisions [14], from figure 12 we find

that excellent < 10% statistical precision can be achieved for inclusive measurements of

jets of pT as high as 160 GeV in Pb+Pb reactions and 1.3 TeV in p+p reactions. Jet shape

measurements require higher statistics since the shape functions are precipitously falling

as of r/R → 1. We expect that very good, < 30% at large r/R ∼ 1, jet shape measure-

ments will be possible to pT as high as 100 GeV and 900 GeV in Pb+Pb and p+p collisions,

respectively. These will give an indication as to whether medium-induced broadening is

present in the tails of the intra-jet energy distribution. The estimates presented in this

appendix are conservative, ∆y = 1.

B. Contributions to the vacuum jet shape

It is important that a jet finding algorithm be infrared and collinear safe. In full Monte-

Carlo simulations of high-energy hadronic events the algorithm can be “tested” and

matched to the experimental measurement techniques. In analytic calculations an ap-

proximate way to mimic the effect of jet splitting/merger is to introduce an adjustable

parameter, Rsep, for cone type algorithms. If two partons are within an angle RsepR of

each other, they should be merged into one jet [38]. This approach may not be optimal [15]

since it does not generalize intuitively for NLO jet shape calculations. When comparing

theoretical results to experimental data one finds that Rsep is a function of the event kine-

matics, i.e. it is jet momentum (energy) dependent. Nevertheless, at lowest order this is

a useful phenomenological approach to obtain the best possible description of the baseline

differential jet shapes in nucleon-nucleon collisions, needed for the study of QGP-induced

effects. Also, it known that for jet cross sections at NLO the results from other jet finding

algorithms, such as the fully infrared and collinear safe kT algorithm with a jet-size param-
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Figure 13: (Color online) Comparison of the theoretically computed jet shapes with Rsep = 1.3, 2

and two different non-perturbative correction scales Q0 = 2.0GeV and 3.0GeV to experimental

data [20]. A jet cone radius R = 0.7 was chosen in
√
s = 1960GeV p+p̄ collisions by CDF II.

eter D, coincide within a few % with the results from the cone algorithm with appropriate

matching/choice of R and Rsep [16].

In figure 13 we demonstrate how the numerical results for jet shapes can be optimized

using experimental data at the Tevatron. Proper normalization of ψ(r,R) in this appendix

is achieved via first bin subtraction and does not affect the moderate and large r/R part

of the energy flow distribution. At low transverse energy, ET = 45 − 55 GeV, a numerical

calculation with large Rsep = 2.0 gives a much better fit than one with a small Rsep =

1.3. At high ET = 250 − 277 GeV, the theoretical result with small Rsep = 1.3 agrees

with the data by CDF II fairly well. This finding is consistent with a previous study

showing that, to fit the data, at low jet ET one always needs a larger Rsep and that Rsep

should drop with increasing transverse energy [38]. In the numerical calculations shown in

figure 13 the contribution of power correction to the jet shape has been included. The scale

Q0 is used to separate the non-perturbative effect from the perturbative derivation (see

eqs. (2.18) and (2.19)). In figure 13 two different values of the non-perturbative correction

scale, Q0 = 2GeV and Q0 = 3 GeV, are used. It is clear that the curves with these two

different scales are practically indistinguishable, which demonstrates the consistency of our

treatment of non-perturbative effects.

In figure 14 we illustrate the influence of the different perturbative and non-

perturbative contributions to the jet shape for different ET . We observe that the effect of
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Figure 14: (Color online) Differential jet shapes in p+p̄ collisions at
√
s = 1960GeV [20] are com-

pared to theory. Leading-order without initial-state radiation (LO w/o IS), leading-order contibu-

tion (LO), leading-order with power correction (LO+PC), and leading-order with power correction

and Sudokov resummation (LO+PC+RS) results are shown separately.

initial-state radiation (IS), absent in lepton colliders, is sizable. In fact, at very high jet

energy, a leading-order (LO) calculation with initial- state radiation already gives a good

description of the experimental data. However, below ≈ 75 GeV it is impossible to fit the

data using only leading order, even with the maximum Rsep = 2. Other contributions

should be considered in an improved theoretical description of jet shapes. These include

the effect of the running coupling constant in the momentum transfer integrals (MLLA)

and power corrections (PC) ∝ Q0/ET . Sudakov resummation (RS) ensures the finiteness

of ψ(r,R) in the region r → 0. The explicit formulas for these two contributions are given

in section 2.1. It can be seen from figure 14 that all perturbative and non-perturbative

effects should be taken into account if reliable description of the experimental results is to

be achieved.

C. Double differential medium-induced jet shape

In this paper we have investigated extensively the differential jet shapes ψ(r,R) = dΨint.(r/R)
dr

in vacuum and in heavy-ion collisions at the LHC. This quantity integrates over the en-

ergy distribution of the partonic jet fragments. Thus, the information about the angular

distribution of soft vs hard shower partons is lost. At the LHC it might be possible, via

particle tracking or jet re-analysis, to recover this information on an event-by-event basis
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jet of jet energy ET = 100GeV with R = 1, ωmin = 0GeV in Pb+Pb collisions with
√
s = 5500GeV

at the LHC. Four different figures represent the double differential jet shape for medium-induced

gluon momentum fraction z = 0.01, 0.03, 0.1, 0.3, respectively.

and construct d2Ψ(r,R)
drdz , where:

d2Ψmed.(r,R)

drdz
=

1

∆Ein(R, 0)

dIg(ω = zEjet, r)

dωdr
. (C.1)

In eq. (C.1) the QGP-induced double differential shape is normalized such that it integrates

to unity with Rmax = R, ωmin = 0 and z = ω/Ejet. To illustrate the additional insight

that can be gained through such studies we show numerical results for a simplified case

where a quark jet of Ejet = 100 GeV propagating through a QGP of length L = 6 fm.

While the medium is not expanding and characterized by λg = 1.5 fm, mD = 0.7 GeV and

αs = 0.3, the 〈∆E/E〉 approximates the full numerical result for central Pb+Pb collisions

at the LHC.

Figure 15 shows a 3D plot of rψmed(r,R)
(2πr)drdz for momentum fraction z = k+/E+ ∼

ωgluon/ET = 0.01, 0.03, 0.1, 0.3 and R = 1, ωmin = 0 GeV. We can observe that at z = 0.01
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(ω = 1 GeV) the double differential medium-induced jet shape is dominated by gluon radia-

tion at large opening angle r/R. At z = 0.03 (ω = 3 GeV) the peak lies in the intermediate

r/R region with significantly suppressed gluon radiation at small open angle r/R. Increas-

ing ω further narrows the medium-induced intensity profile. It is tempting to associate

the characteristic shapes for small values of z in figure 15 with measurements of enhanced

away-side large-angle particle-triggered correlations [39 – 41]. However, the current RHIC

data presents challenges in separating the jet from the background or even distinguishing

between events with 1 or 2 minijets (recall that Ncoll ∼ 1000 in central Au+Au). Analysis

on an event-by-event basis can help reveal unambiguously the QGP medium response to

jets. When future experimental measurements of jet in heavy ion collisions are perfected at

the LHC full numerical simulations of the double differential shape, including the vacuum

and medium- induced components, will soon follow.
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[25] T. Sjöstrand, S. Mrenna and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006)

026 [hep-ph/0603175].

[26] C. Markert, R. Bellwied and I. Vitev, Formation and decay of hadronic resonances in the

QGP, Phys. Lett. B 669 (2008) 92 [arXiv:0807.1509].

– 34 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CC77%2C064907
http://arxiv.org/abs/0801.1665
http://arxiv.org/abs/0808.0908
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C114014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C114014
http://arxiv.org/abs/0705.2141
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG34%2C2307
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG35%2C104040
http://arxiv.org/abs/0805.4656
http://arxiv.org/abs/0809.1609
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB513%2C269
http://arxiv.org/abs/hep-ph/9707338
http://arxiv.org/abs/hep-ph/9707349
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PPNPD%2C60%2C484
http://arxiv.org/abs/0712.2447
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C93%2C042301
http://arxiv.org/abs/hep-ph/0310079
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB352%2C451
http://arxiv.org/abs/hep-ph/9504219
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB536%2C177
http://arxiv.org/abs/hep-ph/0202202
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C112002
http://arxiv.org/abs/hep-ex/0505013
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG35%2C104011
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG35%2C104011
http://arxiv.org/abs/0806.0003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB630%2C78
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB630%2C78
http://arxiv.org/abs/hep-ph/0501255
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA733%2C265
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA733%2C265
http://arxiv.org/abs/nucl-th/0310076
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C93%2C072301
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C93%2C072301
http://arxiv.org/abs/nucl-th/0309040
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB526%2C301
http://arxiv.org/abs/nucl-th/0109063
http://jhep.sissa.it/stdsearch?paper=05%282006%29026
http://jhep.sissa.it/stdsearch?paper=05%282006%29026
http://arxiv.org/abs/hep-ph/0603175
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB669%2C92
http://arxiv.org/abs/0807.1509


J
H
E
P
1
1
(
2
0
0
8
)
0
9
3

[27] I. Vitev, Testing the theory of QGP-induced energy loss at RHIC and the LHC, Phys. Lett. B

639 (2006) 38 [hep-ph/0603010].

[28] A. Majumder, A comparative study of jet-quenching schemes, J. Phys. G 34 (2007) S377

[nucl-th/0702066].

[29] S. Wicks and M. Gyulassy, Aspects of jet energy loss at RHIC and LHC, J. Phys. G 34

(2007) S989 [nucl-th/0701088].

[30] A. Adil and I. Vitev, Collisional dissociation of heavy mesons in dense QCD matter, Phys.

Lett. B 649 (2007) 139 [hep-ph/0611109].

[31] I.P. Lokhtin, S.V. Petrushanko, A.M. Snigirev and C.Y. Teplov, Simulation of jet quenching

and high-pT particle production at RHIC and LHC, PoS(LHC07)003 [arXiv:0706.0665];

I.P. Lokhtin et al., Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs),

arXiv:0809.2708.

[32] I. Vitev and B.-W. Zhang, A systematic study of direct photon production in heavy ion

collisions, Phys. Lett. B 669 (2008) 337 [arXiv:0804.3805].

[33] C. Mironov, P. Constantin and G.J. Kunde, Dilepton tagged jets, Eur. Phys. J. C 49 (2007)

19.

[34] N. Grau, B.A. Cole, W.G. Holzmann, M. Spousta and P. Steinberg, Identification and

rejection of fake reconstructed jets from a fluctuating heavy ion background in ATLAS,

arXiv:0810.1219.

[35] I. Vitev, J.T. Goldman, M.B. Johnson and J.W. Qiu, Open charm tomography of cold nuclear

matter, Phys. Rev. D 74 (2006) 054010 [hep-ph/0605200].

[36] J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD

analysis, JHEP 07 (2002) 012 [hep-ph/0201195].

[37] CDF II collaboration, A. Abulencia et al., Measurement of the inclusive jet cross section

using the k(t) algorithm in pp̄ collisions at
√
s = 1.96TeV, Phys. Rev. Lett. 96 (2006) 122001

[hep-ex/0512062].

[38] M. Klasen and G. Kramer, Jet shapes in ep and pp̄ collisions in NLO QCD, Phys. Rev. D 56

(1997) 2702 [hep-ph/9701247].

[39] PHENIX collaboration, A. Adare et al., Dihadron azimuthal correlations in Au+Au

collisions at
√
sNN = 200GeV, Phys. Rev. C 78 (2008) 014901 [arXiv:0801.4545];

J. Jia, Understanding jet quenching and medium response with di-hadron correlation, J. Phys.

G 35 (2008) 104033 [arXiv:0805.0160].

[40] STAR collaboration, J.G. Ulery, Three-particle azimuthal correlations, Nucl. Phys. A 783

(2007) 511 [nucl-ex/0609047];

C.A. Pruneau, Search for conical emission with three-particle correlations, J. Phys. G 34

(2007) S667.

[41] L. Molnar, Prospects for identified leading particle correlation at LHC and in ALICE,

PoS(LHC07)027 [arXiv:0801.2715].

– 35 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB639%2C38
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB639%2C38
http://arxiv.org/abs/hep-ph/0603010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG34%2CS377
http://arxiv.org/abs/nucl-th/0702066
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG34%2CS989
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG34%2CS989
http://arxiv.org/abs/nucl-th/0701088
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB649%2C139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB649%2C139
http://arxiv.org/abs/hep-ph/0611109
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LHC07)003
http://arxiv.org/abs/0706.0665
http://arxiv.org/abs/0809.2708
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB669%2C337
http://arxiv.org/abs/0804.3805
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC49%2C19
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC49%2C19
http://arxiv.org/abs/0810.1219
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C054010
http://arxiv.org/abs/hep-ph/0605200
http://jhep.sissa.it/stdsearch?paper=07%282002%29012
http://arxiv.org/abs/hep-ph/0201195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C96%2C122001
http://arxiv.org/abs/hep-ex/0512062
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD56%2C2702
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD56%2C2702
http://arxiv.org/abs/hep-ph/9701247
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CC78%2C014901
http://arxiv.org/abs/0801.4545
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG35%2C104033
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG35%2C104033
http://arxiv.org/abs/0805.0160
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA783%2C511
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA783%2C511
http://arxiv.org/abs/nucl-ex/0609047
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG34%2CS667
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG34%2CS667
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LHC07)027
http://arxiv.org/abs/0801.2715

